

Stock-Flow-Consistent Modeling Lecture 5: open economy models

Gennaro Zezza

A simple two-region models: Assumptions

(From Godley-Lavoie, 2007, ch.6)

Two regions – single central government, and single Central Bank.

Same currency, so no exchange rate

Financial assets given by HP money and government bonds (no regionally-issued assets)

Can approximate two (blocks of) countries in the Eurozone under a common fiscal policy

The balance sheet

Table 6.1 Balance sheet of two-region economy (Model REG)

	North households	South households	Government	Central bank	Σ
Cash money	$+H_{h}^{N}$	$+H_{h}^{S}$		-H	0
Bills	$+B_{h}^{N}$	$+B_{h}^{S}$	-B	$+B_{cb}$	0
Wealth (balancing item)	$-V_{h}^{N}$	$-V_{h}^{S}$	$-V_{g}$	0	0
Σ	0	0	0	0	0

Transaction matrix

	North households	North production	South households	South production	Government	Central bank	Σ
Consumption	$-C^{N}$	$+C^{N}$	$-C^{S}$	$+C^{S}$			0
Govt. exp.		$+G^{N}$		$+G^{S}$	-G		0
North Exports to South		$+X^{N}$		-IM ^S			0
South Exports to North		-IM ^N		$+X^{S}$			0
GDP	$+Y^{N}$	$-Y^{N}$	$+Y^{S}$	$-Y^{S}$			0
Interest payments	$+r_{-1} \cdot B_{h-1}^{N}$		$+r_{-1} \cdot B_{h-1}^{S}$		$-r_{-1}B_{-1}$	$+r_{-1} \cdot B_{cb-1}$	0
Profits of central bank					$+r_{-1} \cdot B_{cb-1}$	$-r_{-1} \cdot B_{cb-1}$	0
Taxes	$-T^{N}$		$-T^{S}$		+T		0
Change in cash	$-\Delta H_{ m h}^{ m N}$		$-\Delta H_{\rm h}^{\rm S}$			$+\Delta H$	0
Change in bills	$-\Delta B_{h}^{N}$		$-\Delta B_{h}^{S}$		$+\Delta B$	$-\Delta B_{\rm cb}$	0
Σ	0	0	0	0	0	0	0

Table 6.2 Transactions-flow matrix of two-region economy (Model *REG*)

Model equations

$$Y^{N} = C^{N} + G^{N} + X^{N} - IM^{N}$$

$$Y^{S} = C^{S} + G^{S} + X^{S} - IM^{S}$$

$$IM^{N} = \mu^{N} \cdot Y^{N}$$

$$IM^{S} = \mu^{S} \cdot Y^{S}$$
(6.1)
(6.2)
(6.2)
(6.3)

$$X^{\rm N} = I M^{\rm S} \tag{6.5}$$

$$X^{\rm S} = I M^{\rm N} \tag{6.6}$$

Model equations #2

$$YD^{N} = Y^{N} - T^{N} + r_{-1} \cdot B^{N}_{h-1}$$
(6.7)

$$YD^{S} = Y^{S} - T^{S} + r_{-1} \cdot B^{S}_{h-1}$$
(6.8)

$$T^{N} = \theta_{-1} (Y^{N} + r_{-1} - B^{N}_{h-1}) = 0 \le \theta_{-1} \le 1$$
(6.9)

$$I^{-1} = \theta \cdot (I^{-1} + I_{-1} \cdot B_{h-1}) \quad 0 < \theta < 1$$
(0.9)

$$T^{S} = \theta \cdot (Y^{S} + r_{-1} \cdot B^{S}_{h-1}) \quad 0 < \theta < 1$$
(6.10)

$$V^{\rm N} = V^{\rm N}_{-1} + (YD^{\rm N} - C^{\rm N}) \tag{6.11}$$

$$V^{\rm S} = V^{\rm S}_{-1} + (YD^{\rm S} - C^{\rm S}) \tag{6.12}$$

$$C^{N} = \alpha_{1}^{N} \cdot YD^{N} + \alpha_{2}^{N} \cdot V_{-1}^{N} \quad 0 < \alpha_{2} < \alpha_{1} < 1$$
(6.13)

$$C^{S} = \alpha_{1}^{S} \cdot YD^{S} + \alpha_{2}^{S} \cdot V_{-1}^{S} \quad 0 < \alpha_{2} < \alpha_{1} < 1$$
(6.14)

Model equations #3

$$\begin{split} H_{\rm h}^{\rm N} &= V^{\rm N} - B_{\rm h}^{\rm N} \tag{6.15} \\ H_{\rm h}^{\rm S} &= V^{\rm S} - B_{\rm h}^{\rm S} \tag{6.16} \\ \frac{B_{\rm h}^{\rm N}}{V^{\rm N}} &= \lambda_0^{\rm N} + \lambda_1^{\rm N} \cdot r - \lambda_2^{\rm N} \cdot \left(\frac{YD^{\rm N}}{V^{\rm N}}\right) \tag{6.17} \\ \frac{B_{\rm h}^{\rm S}}{V^{\rm S}} &= \lambda_0^{\rm S} + \lambda_1^{\rm S} \cdot r - \lambda_2^{\rm S} \cdot \left(\frac{YD^{\rm S}}{V^{\rm S}}\right) \tag{6.18} \end{split}$$

Model equations #4

$$T = T^{N} + T^{S}$$
(6.19)

$$G = G^{N} + G^{S}$$
(6.20)

$$B_{h} = B_{h}^{N} + B_{h}^{S}$$
(6.21)

$$H_{h} = H_{h}^{N} + H_{h}^{S}$$
(6.22)

$$\Delta B_{s} = B_{s} - B_{s-1} = (G + r_{-1} \cdot B_{s-1}) - (T + r_{-1} \cdot B_{cb-1})$$
(6.23)

$$\Delta H_{s} = H_{s} - H_{s-1} = \Delta B_{cb}$$
(6.24)

$$B_{\rm cb} = B_{\rm s} - B_{\rm h} \tag{6.25}$$
$$r = \overline{r} \tag{6.26}$$

Model equations and steady-state

 $H_{\rm S} = H_{\rm h}$ *Missing equation* (6.27)

$$\begin{split} \Delta V^{N} &= Y^{N} + r_{-1} \cdot B^{N}_{-1} - T^{N} - C^{N} \\ \Delta V^{N} &= (G^{N} + r_{-1} \cdot B^{N}_{-1}) + X^{N} - T^{N} - IM^{N} \\ G^{N}_{T} &= G^{N} + r_{-1} \cdot B^{N}_{h-1} \\ \Delta V^{N} &= (G^{N}_{T} + X^{N}) - (T^{N} + IM^{N}) = (G^{N}_{T} - T^{N}) + (X^{N} - IM^{N}) \end{split}$$

Steady state solution

$$G_{\rm T}^{\rm N} - T^{\rm N} = IM^{\rm N} - X^{\rm N}$$

$$G_{\rm NT}^{\rm N} = G^{\rm N} + r_{-1} \cdot B_{\rm h-1}^{\rm N} - \theta \cdot r_{-1} \cdot B_{\rm h-1}^{\rm N}$$

$$Y^{\rm N*} = \frac{(G_{\rm NT}^{\rm N} + X^{\rm N})}{(\theta + \mu^{\rm N})}$$

Foreign trade (Harrod) multiplier

Super stationary

$$Y^{N **} = \frac{G_{NT}^{N}}{\theta} = \frac{X^{N}}{\mu^{N}}$$

With Eviews model REG

A simple two-country model

Assumptions

No capital movement

Fixed exchange rate

Current account imbalances cleared by changes in gold reserves at Central banks (approximates changes in reserves in US dollars)

Balance sheet

Table 6.3 Balance sheet matrix of two-country economy (Model OPEN)

	North house- holds	North Govt.	North central bank		South	South central bank	Σ
Cash money	$+H_{h}^{N}$		$-H_{\rm h}^{\rm N}$	$+H_{h}^{S}$		$-H_{h}^{S}$	0
Bills	$+B_{h}^{N}$	$-B^{N}$	$+B_{cb}^{N}$	$+B_{h}^{S}$	$-B^{S}$	$+B_{cb}^{S}$	0
Gold reserves			$+ or^{N} \cdot p_{g}^{N} \cdot xr$			$+ or^{S} \cdot p_{g}^{S}$	$\begin{array}{l} or^{\rm N} \cdot p_{\rm g}^{\rm N} \cdot xr \\ + or^{\rm S} \cdot p_{\rm g}^{\rm S} \end{array}$
Wealth (balancing item)	$-V_{\rm h}^{\rm N}$	$-V_{g}^{N}$	0	$-V_{\rm h}^{\rm S}$	$-V_g^S$	0	$\begin{array}{l} - (or^{\mathrm{N}} \cdot p_{\mathrm{g}}^{\mathrm{N}} \cdot xr \\ + or^{\mathrm{S}} \cdot p_{\mathrm{g}}^{\mathrm{S}}) \end{array}$
Σ	0	0	0	0	0	0	0

Tuncartin matrix

	North country						South	l country		
	Households	Producers	Govt.	Central bank		Households	Producers	Govt.	Central bank	Σ
Consumption	$-C^{N}$	$+C^{N}$				$-C^{S}$	$+C^{S}$			0
Govt. exp.		$+G^{N}$	$-G^{N}$				$+G^S$	$-G^S$		0
North Exports to South		$+X^{N}$			·xr		-IM ^S			0
South Exports to North		-IM ^N			·xr		$+X^{S}$			0
GDP	$+Y^{N}$	$-Y^{N}$				$+Y^{S}$	$-Y^{S}$			0
Interest payments	$+r_{-1} \cdot B_{h-1}^{N}$		$-r_{-1} \cdot B_{-1}^{\mathrm{N}}$	$+r_{-1} \cdot B_{cb}^{N}$		$+r_{-1} \cdot B_{h-1}^{S}$		$-r_{-1} \cdot B_{-1}^{\mathrm{S}}$	$+r_{-1} \cdot B_{cb-1}^{S}$	0
Profits of central bank			$+r_{-1} \cdot B_{cb-1}^{N}$	$-r_{-1} \cdot B_{cb-1}^{N}$				$+r_{-1} \cdot B_{cb-1}^{S}$	$-r_{-1} \cdot B_{cb-1}^{S}$	0
Taxes	$-T^{N}$		$+T^{N}$			$-T^{S}$		$+T^{S}$		0
Change in cash	$-\Delta H_{\rm h}^{\rm N}$			$+\Delta H^{N}$		$-\Delta H_{\rm h}^{\rm S}$			$+\Delta H^{S}$	0
Change in bills	$-\Delta B_{\rm h}^{\rm N}$		$+\Delta B^{N}$	$-\Delta B_{\rm cb}^{\rm N}$		$-\Delta B_{\rm h}^{\rm S}$		$+\Delta B^{S}$	$-\Delta B_{\rm cb}^{\rm S}$	0
Change in reserves				$-\Delta or^{N} \cdot p_{g}^{N}$	·xr				$-\Delta or^{S} \cdot p_{g}^{S}$	
Σ	0	0	0	0		0	0	0	0	0

Changed equations

$$X^{N} = \frac{IM^{S}}{xr}$$
$$X^{S} = IM^{N} \cdot xr$$

$$\Delta B_{\rm s}^{\rm N} = B_{\rm s}^{\rm N} - B_{\rm s-1}^{\rm N} = (G^{\rm N} + r_{-1}^{\rm N} \cdot B_{\rm s-1}^{\rm N}) - (T^{\rm N} + r_{-1}^{\rm N} \cdot B_{\rm cb-1}^{\rm N})$$

$$\Delta B_{\rm s}^{\rm S} = B_{\rm s}^{\rm S} - B_{\rm s-1}^{\rm S} = (G^{\rm S} + r_{-1}^{\rm S} \cdot B_{\rm s-1}^{\rm S}) - (T^{\rm S} + r_{-1}^{\rm S} \cdot B_{\rm cb-1}^{\rm S})$$

$$B_{cb}^{N} = B_{s}^{N} - B_{h}^{N}$$
$$B_{cb}^{S} = B_{s}^{S} - B_{h}^{S}$$

Changed equations #2

$$\begin{split} &\Delta or^{N.} \cdot p_{g}^{N} = \Delta H_{s}^{N} - \Delta B_{cb}^{N} \\ &\Delta or^{S.} \cdot p_{g}^{S} = \Delta H_{s}^{S} - \Delta B_{cb}^{S} \\ &H_{s}^{N} = H_{h}^{N} \qquad \textit{Supply of cash is endogenous} \\ &H_{s}^{S} = H_{h}^{S} \\ &p_{g}^{N} = \overline{p}_{g}^{N} \end{split}$$

$$p_{\rm g}^{\rm S} = p_{\rm g}^{\rm N} \cdot xr$$

Changed equations #3

xr = xr $r^{N} = \overline{r}^{N}$ $r^{S} = \overline{r}^{S}$

$\Delta or^{\rm S} = -\Delta or^{\rm N}$

Missing equation

With Eviews model OPEN

Alternative closure #1

Government expenditure react to changes in gold reserves

Experiments with Eviews model OPENG

$$\begin{split} G^{\mathrm{N}} &= G^{\mathrm{N}}_{-1} + \varphi^{\mathrm{N}} \cdot (\Delta or^{\mathrm{N}}_{-1} \cdot p^{\mathrm{N}}_{\mathrm{g-1}}) \\ G^{\mathrm{S}} &= G^{\mathrm{S}}_{-1} + \varphi^{\mathrm{S}} \cdot (\Delta or^{\mathrm{S}}_{-1} \cdot p^{\mathrm{S}}_{\mathrm{g-1}}) \end{split}$$

Alternative closure #2

Adjustments of interest rates

Experiments with Eviews model OPENM

$$r^{N} = r_{-1}^{N} - \varphi^{N} \cdot (\Delta o r_{-1}^{N} \cdot p_{g-1}^{N})$$
$$r^{S} = r_{-1}^{S} - \varphi^{S} \cdot (\Delta o r_{-1}^{S} \cdot p_{g-1}^{S})$$

Alternative closure #3

Adjustments of interest rates and propensity to spend

Experiments with Eviews model OPENM3

$$\alpha_1^{\rm S} = \alpha_{10}^{\rm S} - \iota^{\rm S} \cdot r^{\rm S}$$